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RECONSTRUCTION ALGORITHMS 
IN IRREGULAR SAMPLING 

KARLHEINZ GROCHENIG 

ABSTRACT. A constructive solution of the irregular sampling problem for band- 
limited functions is given. We show how a band-limited function can be com- 
pletely reconstructed from any random sampling set whose density is higher than 
the Nyquist rate, and give precise estimates for the speed of convergence of this 
iteration method. Variations of this algorithm allow for irregular sampling with 
derivatives, reconstruction of band-limited functions from local averages, and 
irregular sampling of multivariate band-limited functions. 

In the irregular sampling problem one is asked whether and how a band- 
limited function f can be completely reconstructed from its irregularly sam- 
pled values f(xi). This has many applications in signal and image processing, 
seismology, meteorology, medical imaging, etc. Finding constructive solutions 
of this problem has received considerable attention among mathematicians and 
engineers. 

The mathematical literature provides several uniqueness results [ 1, 2, 17, 18, 
19]. It is now part of the folklore that for stable sampling the sampling rate 
must be at least the Nyquist rate [18]. These results, as deep as they are, have 
had little impact for the applied sciences, because they were not constructive. 

If the sampling set is just a perturbation of the regular oversampling, then 
a reconstruction method has been obtained in a seminal paper by Duffin and 
Schaeffer [6] (see also [29]): if for some L > 0, a > 0, and 3 > 0 the sampling 
points Xk, k E Z, satisfy (a) Ixk-k? < L and (b) IXk--XI > a, k / 1, then 
the norm equivalence A fR f(x)12 dx < Zk f(xk)12 < B fR If(x) 12 dx holds 
for all f E L2(R) such that suppf C [-co, co] with co < 7/J3. This norm 
equivalence implies that it is possible to reconstruct f through an iterative 
procedure, the so-called frame method. Most of the later work on constructive 
methods consists of variations of this method [3, 21, 22, 26]. 

The above conditions on the sampling set exclude random irregular sampling 
sets, e.g., sets with regions of higher sampling density. A partial, but undesirable 
remedy, to handle highly irregular sampling sets, would be to force the above 
conditions by throwing away information on part of the points and accept a 
very slow convergence of the iteration. 
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Since the constants A and B are not explicit, it is impossible to estimate 
the rate of convergence of the procedure, which only depends on the number 
(B-A)/(B + A). 

Recently the method of projections onto convex sets (POCS; cf. [28]) has 
been applied to irregular sampling problems [21, 25, 27]. The emphasis in 
these works is more on the interpolation of sampled data (xi, yi) by a band- 
limited function satisfying f(xi) = yi. Numerical questions such as feasible 
sampling densities or speed of convergence of these algorithms were not touched. 
Nevertheless, the ingenious method of POCS has the potential to provide a 
complete reconstruction of a band-limited function from irregularly sampled 
values. 

A very general qualitative theory for irregular sampling has been developed 
by Feichtinger and the author in a series of papers [8, 9, 10, 11] (cf. [14] for an 
elementary exposition). It is based on the fact that every band-limited function 
f satisfies a reproducing formula f * g = f for a suitable function g. In 
contrast to the work mentioned so far, these algorithms work for a large class of 
norms and are extremely stable with respect to perturbations [ 12]. In numerical 
experiments these algorithms have performed equally well or better than other 
methods [13]. But again, the constants are rather implicit, and it is unclear for 
which sampling rates and how fast these algorithms will converge. 

In all these investigations of irregular sampling the numerical aspects have 
been rather neglected. It is quite easy to implement sampling geometries for 
which the iteration diverges. Thus, lacking precise estimates of the constants 
involved, numerical work had to be done on a trial-and-error basis. For effec- 
tive applications of an iterative reconstruction algorithm one must answer the 
following questions: 

1. For which sampling densities does the iteration converge to the original 
function f ? 

2. How fast will these iterations converge to the original signal? How many 
iterations have to be computed to achieve a certain accuracy? 

This paper aims at the quantitative aspects of the irregular sampling problem. 
In this paper these questions will be answered for several different reconstruction 
methods. Breaking a habit, only Hilbert spaces of band-limited functions are 
considered. 

In ?2 an iterative method is developed which yields a complete reconstruction 
of a band-limited function from any randomly distributed sampling set with a 
density higher than the Nyquist density (Theorem 1). An essential part of this 
theorem is a precise estimate for the rate of convergence of this algorithm. Sec- 
tion 3 shows that a band-limited function can even be reconstructed completely 
from local averages around the sampling points xi instead of the precise values 
f(xi) . 

Section 4 contains some variations to show the potential of this method. The 
speed of convergence can be increased considerably by (a) using piecewise linear 
approximations, or (b) irregular sampling with derivatives. Finally a multivari- 
ate version for irregular sampling of band-limited functions on Rn is proven. 

The underlying idea is to view a Hilbert space of band-limited functions with 
fixed spectrum as a reproducing kernel Hilbert space and then approximate 
a band-limited function f by a discretized version Af which contains the 
sampled values of f only. The reconstruction of f is then based on a Neumann 
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series expansion of A-1 . The novelty of this paper lies in explicit and sharp 
estimates of the error f - Af . 

For an overview of the extensive literature on irregular sampling and ref- 
erences to other facets of this problem, we refer to [20] and the long lists of 
references in [9, 10]. 

1. PRELIMINARIES 

As usual, L2(R) denotes the Hilbert space of square-integrable functions on 
R with norm Ilf H1 = (f' If(x) 12 dx) 1/2. 

Let Q? be a compact set and let co = supte. Itl be the extension of Q. Then 
B2(Q) = {f E L2(R): suppf C Q} denotes the closed subspace of square- 
integrable band-limited functions with spectrum (= support of the Fourier 
transform) in Q?. By P we denote the orthogonal projection from L2(R) onto 
B2(Q), defined by (Pf)^ = X f a.e., where XQ is the characteristic function 
of the set Q . Here the Fourier transform is defined by f(4) = fR f(x)e-ixX dx . 

A sequence X = (xi)iEz, < xi < xi < xi+I < ... , is 3-dense, if 
supi(xi+I - xi) < 3. It is not required that the xi's are separated from each 
other by a minimal distance. The inverse 3-1 is usually referred to as the 
sampling rate; thus a smaller value of 3 corresponds to a higher sampling rate. 

Lemma 1 (Wirtinger's inequality). (a) If f, f' E L2(a, b) and either f(a) = 0 
or f(b) = 0, then 

b 4 b 
(1) If(x) 12 dx < -(b - a)2 jfI(x)12 dx. 

(b) If f, f" E L2(a, b) and f(a) = f(b) = 0, then 

(2) j f(x) I" (b ) a f() dx. 

Part (a) of the lemma follows from [15, p. 184], by a change of variables, 
part (b) occurs first in [7], see also [5]. 

Lemma 2 (Bernstein's inequality). If f E B2(Q) and w-) = supte Itl , then 
f' E B2(Q) and 

(3) lHf'II <_ wOlfH1. 
(Here the normalization of the Fourier transform is crucial!) 

Lemma 3 (Iterative reconstruction). Let A be a bounded operator on a Banach 
space B such that 11 Id -Al' < 1, where 11' denotes the operator norm on B. 
Then A is invertible on B and A-1 = E0(Id -A) . 

(a) Moreover, every f E B can be reconstructed by the iteration 
00 

(4) qo=Af, q$n+ 1=?n-Aqn$ f=1q0n 
n=O 

with convergence in B. 
(b) Setting fn = En=o ck, the error is 

(5f lif-fnH|B ? H Id-AH'tn1 1 _- Id-ATt -AII/ 
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Proof. The Neumann series for the inverse of an operator is a standard fact. 
Part (a) then follows from 

00 

(6) f = A-'Af = Z(Id -A)nAf 
n=O 

by setting 0bo = Af and 

(7) = (Id -A)nAf = (Id-A)(Id-A)n- 1Af = qn- -Aqn- 1 X 

For (b) we observe that 
00 00 

(8) f-fn= Z Ok= Z (Id -A)kAf. 
k=n+1 k=n+I 

The error estimate is now a consequence of 

E (Id -A)k A < E 11 Id -A 11'k IAII' 

(9) k=n+1 k=n+1 

<1 -Id-A A' (1? + 1Id-All'). El 

This simple lemma is the core of many important algorithms in analysis. It 
reduces the design of an iterative reconstruction algorithm to finding an appro- 
priate approximation of the identity operator. 

2. A SIMPLE RECONSTRUCTION ALGORITHM 

In this section we prove a simple iterative algorithm for the reconstruction 
of a band-limited function f E B2(Q2) from its randomly sampled values f(xi) 
and discuss its stability and its speed of convergence. The algorithm is but a 
simplification of [9, 10] for the L2-situation. The main contribution here are 
explicit and optimal estimates. 

Let X = (Xi)iEZ, < xi-, < xi < xi+1 < , be a sampling set of density 
3 . Denote the midpoints by Yi = (xi+I + xi)/2 and set Xi = X[y_l Iy,) . Then 
yi - xi < 35/2, xi - Yi-I < 3/2, and the Xi's form a partition of unity, i.e., 
Ei=ZOZ Xi(X) = 1 forall x. 
Theorem 1. (a) Reconstruction: If 3 < 7r/o, i.e., if the sampling rate of X is 
higher than the Nyquist rate, then every f E B2(Q?) can be completely recon- 
structed from the sampling values f(xi) on an arbitrary 3-dense sampling set 
X by the following iteration: 

(10) o = P (f(xi)xi) 

(11) =n+ I=n - (z?On(X,)Xi) 

and 
00 

(12) f=,O$n, 
n=o 

where all sums converge in L2 . 
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(b) Rate of convergence: Let fn = Zn=0O k be the resulting approximation of 
f after n iterations of( 11). Then 

(13) ((/gC))~~~Jwn+1 nr + i a 

Proof. Define the approximation operator A by 

(14) Af = P (z f(xi)xi) 

It is easily seen that A is a bounded linear operator from B2(Qi) into B2(Qi) 
(see also (18) below). We have to find an estimate on IIf-AfII for f E B2(Q). 
By writing f E B2(Q) as f = Pf = P(ZfXi), one obtains 

lf -AfI = P (Z(f - f(xi))xi) i < (f- 

(15) 2E E 

=j Z |E(f(x) - f(xi))xi dx. 

Since the Xi's are characteristic functions and have mutually disjoint support, 
the last expression equals 

(16) R (E f(X) - f(X)P12i(x)) dx = zj f(X) - f(x1)12 dx. 

The interchange of sum and integral is justified because the sum converges ab- 
solutely. 

Next one applies Wirtinger's inequality (Lemma 1 (a)) to each individual term 
in the following way: 

y, rx, {y, 
J f(x) -f(x)12 dx = J + ... 

4 [x, 4 
(17) < -(Xi - yf_x1)2 

I 
(X)12 dx + 4(yi Xi)2 If'(X)12 dx 

7r2 2 )r 2;- 
< ~ (I/ f (X) 12 dx. 

Summing over i and using Bernstein's inequality, one obtains 

12 <32Yi2 /2 (52w02If12 
Ilf-AfI ? _ 

E fI'(X)12dx -= II Hf. < 

Thus we have obtained the desired estimate 

(18) Ilf -AfII < -IfII for all f E B2(Q). 

Consequently, for 3wc/z~ < 1, Lemma 3 is applicable and the reconstruction 
(1 O0)-( 12) and the error estimate ( 13) are proved. Since the start of the iteration 
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is 00, the reconstruction contains indeed only the information on the samples 
f(xj). n 

Since A-1 is bounded on B2(Q), the stability of the reconstruction follows 
from llfll = IIA-1AfII < IIA-1 11'WPHI'll ieZ f(xi)xiII 
Corollary 1. The sampling from X is stable, i.e., 

(19) lHfHC < Z c Ef(xi)xi 
iEZ 

If X is separated, i.e., Ixi - xj1 > a > 0, then obviously 

(20) lif ? C' (z f(xI) 1/2 

Corollary 2. Set ei = A PPxi. Then the ei 's are a bounded sequence in B2(Q) 
and every f E B2(Q) has the representation 

(21) f = A1P ( f (xi)) = Ei f(xi)ei 

with convergence of the partial sums in the L2 norm. 

Discussion. 1. The Nyquist rate is 7/wo; thus Theorem 1 gives indeed the 
optimal estimate for the sampling density. To my knowledge, the only recon- 
struction method that works at exactly the Nyquist rate is the cardinal series for 
regular sampling [ 16, 4]. 

2. It should be emphasized that the only condition on the sampling set X 
is its density. In contrast to the other constructive methods, neither separation 
nor any other structure of X is required. The convergence of the reconstruction 
of Duffin and Schaeffer [6] by means of the "frame operator" and all methods 
based on it seem to be very slow, when the sampling density varies locally. The 
algorithm of Theorem 1 balances the local variation of the sampling density 
with the partition of unity Xi and thus adapts to local changes of the sampling 
density. 

3. In the so-called sample-and-hold reconstruction the approximation opera- 
tor 

(22) ASHf = P ( f(xi)x[xX1+1) 

is used. Repeating the same argument as above, with equation (17) replaced by 
fXl+ If (x) - 

f(x1)12 dx < 47r-2(X1+1 - X,)2 fX+ If' '(X)12 dx, one arrives at 

23w 
(23) Ilf-AfH1 < ? L lif 1 

Thus convergence of the iteration can be guaranteed only if 3 < 7/2c2. 
4. The factorization (6) and the representation (21) can be used as the starting 

point for a detailed error analysis of the algorithm. This has been done in a 
more general context in [12]. The arguments can easily be simplified to suit the 
situation of Theorem 1 and need not be repeated here. 



RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING 187 

5. Writing fi = Af, the iteration can also be written as 

(24) fn+1 = Tfn fn + A(f-fn), 

as is readily seen from 

n+1 n 

fn+1 = Z:(Id -A)kAf = (Id -A) Z(Id -A)kAf + Af 
k=O k=o 

= fn + A(f-fn). 

In this form it resembles the method of projections onto convex sets. In the 
POCS-method, however, the operators, namely projections, are forced upon the 
user, whereas in our approach one may choose any convenient approximation 
operator A (see the next sections and [10]). The A in Theorem 1 is certainly 
easier to handle than the projection onto {g E B2(Q), g(x1) = f(xZ), i E 
which is needed for POCS. 

6. The error estimate (13) allows one to determine the number of iterations 
required for a certain accuracy. For instance, in order to achieve an accuracy 
of IIf - fn I /IIf I < 0.001 with twofold oversampling, i.e., 3 < 7/2w0, about 11 
iterations are necessary. Since for industrial standards oversampling rates of 4 
are customary, e.g., in CD players, the speed of convergence is very satisfactory. 

The geometric decay of the relative error has also been verified numerically 
[13]. 

3. COMPLETE RECONSTRUCTION FROM AVERAGES 

For physical reasons, e.g., the inertia of the measurement apparatus, it is 
impossible to measure the value of a signal precisely at time x. In practice, 
only a local average of f near xi can be measured and used as the input for a 
reconstruction method. 

To make a realistic model, we assume that the local averages are given by 

(25) fi = Jf(x)ui(x)dx = (ui, f), 

where ui, i E Z, is a collection of averaging functions, i.e., they satisfy the 
properties 

(26) supp ui C [xi - 3/2 , xi + ?/2] 0 < ui(x) < 1, ui(x) dx = 1. 

Observe that the averaging procedure is allowed to vary from point to point. 
It is clear that from these local averages one should obtain at least a good 

approximation of the original function if 3 is small [26]. Next we show that 
band-limited functions are even completely determined by their local averages: 

Theorem 2. Assume that X = (xi) iz is a 3-dense sampling set and that ui, i E 

Z, is a collection of averaging functions with properties (26). If 3 < (V'w) -', 
then every f E B2(Q?) is uniquely determined by the local averages (ui, f) 
around xi. Moreover, f can be reconstructed by the following iteration scheme: 

(27) (Ziu = P V(li fAXi) 
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(28) qn+1 = On P(Z(Uii $n)Xi) 

and 
00 

(29) f =1 On, 
n=O 

where all sums converge in L2 . 
Proof. 1. In this case we have to estimate Ilf - AufII for f = Pf e B2(Q), 
where A,, is the approximation operator 

(30) Auf = P (z(ui, f)xi) 

Keeping the notation of ?2, one calculates as in (15) and (16): 
Yi 

(31) Ilf-Au 112 < zJ f(x) - (u,, f)12 dx. 

Since f ui(x) dx = 1, ui(x) > 0, each term can be estimated by 

Y. x +'5/2 2 

f(x) - | ui(y)f(y) dy dx 
-(/2 

(32) 1Yf+(/ (32) =| /| (f(x)-f(y))u,(y)dy dx 

tY, 

< j SUp If(X) _ f(y)12 dx. 
Y,- y ly-xl<,5 

The integrand 

(33) osc( f(x)= sup If(y) - f(x) 
Y: jy-xj<(5 

is often called the 3-oscillation of f . It measures the local variation of f near 
a point x and has been very useful in the abstract theory of irregular sampling 
[101. 

Summing (32) over i, one obtains 

(34) If - Auf < ?| osc( ffI. 
2. A simple estimate for the oscillation is given in the following lemma. 

Lemma 4. If f' e L2(R), then 

(35) II osc5fI < ? '2' IIf'II* 
Proof of the lemma. The relation 

(36) If(y) - f(x)l = j f'(t) dt < V 0-/i (jJI If'(t)12 dt) 

implies 

(7 f 1/2 

(37) SUp I f(v) - f(x) I < Vr- f I f'(x + t) 12 d t 



RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING 189 

Integration over x and the use of Fubini's theorem yields 
00 00 a5 

(8 OSC f(X)2 dx < ( If'(x + t)12 dt dx 

(38) -?? -00 _ 
{d o00 

= 3ff j j If'(X + t)12 dx dt = 232IIf 112. 
-5 -00 

3. For f E B2( Q), the estimate (34) can be continued by 

(39) 1 1f - Auf I < vr_6I f I I < vr2 ) I If I . 

For V16aw < 1, Lemma 3 is applicable and yields the stated algorithm. El 

Remarks. 1. By Lemma 3(b), the rate of convergence is of the order 
0((V'o23W)n+l). Clearly, stability and a series expansion as in (21) can be ob- 
tained in the same way as above. 

2. The precise nature of the averages ui is usually unknown. If one thinks of 
Au as a physical measurement apparatus or a black box with constant character- 
istics, then in repeated applications of Au (= repeated measurements) always 
the same average is used at xi, and thus our ignorance about the averages should 
not present any problem. 

4. VARIATIONS 

In this section other reconstruction algorithms are considered. The objective 
of the first two subsections is to show how the rate of convergence of the al- 
gorithm can be speeded up by using a different resolution of unity or by using 
irregular sampling with derivatives. Although the results are not as complete as 
in ?2, they could be very useful in many applications with high oversampling. 

4.1. Piecewise linear approximations. Instead of the characteristic functions 
Xi = x[L,_l YJ one may use other partitions of unity [9, 10]. In this section we 
use the triangular functions 

x - xi- lfor xi-, < x < xi, 
IXi- xi-l 

- xi - 1 
ki(x)= xl+-x for xi < x < xi+, 

IXi+1 -Xi 
0 elsewhere. 

Then Ei Vi(x) = 1 for all x and 

(40) E f(xi)yvi(x)=f(xi)+f(xi+i) 
- f(xi)(x-xi) forxi<x<xi+l 

i ~~~~~xi+1- Xi 

becomes the piecewise linear interpolation of f . 
Theorem 3. If 3 < 7/wo, then f E B2(Q) can be reconstructedfrom any 3-dense 
sampling set X = (xi)iEz by means of the iteration procedure 

(42) o = qn -P (z xn(xi)v/)i 
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and 
00 

(43) f = : On, 

n=o 

where all sums converge in L2. If fn = Zn=0 kk the rate of convergence is 

(44 ,f ()2(fn+1) JC' + 322 HI2o 

Proof. By (40) we deal with the approximation operator 

fxi+i) - X 
(45) Al f(x) = P (,i (f (xi) ? + f()( - Xi)) X[x,,+ () 

With the abbreviation Ai = (f(xi+i) - f(xi))/(xi+I - xi) one calculates as in 
(1.5) and (16): 

fxl+1 

(46) Ilf - Al fI2 < 
I 
f(x) - f (X,) - A, (x - xi)12 dx. 

Since the integrand vanishes at xi and xi+I, the second form of Wirtinger's 
inequality (2) yields 

J1 
f (x) - f(xi) - 

A, (x - 
Xi) 12 dx 

~ xi+1- Xi)4jX1+12 
(47) ~~~~~< 7x+ x I f "(x) 12 dx. 

Taking the sum over i, one obtains for f E B2(Q) 

(48) fAf-H2 < 54 lH11f2 <_4 Ilf 112. 

For 6c < 7, the algorithm is implied by Lemma 3. The error is now of the 
order 0((CJ)/Jl)2(n+1)). 0 

Remark. Using higher-order splines for the partition of unity, we may increase 
the rate of convergence. It is an open problem to determine the required sam- 
pling rate and the optimal constants for this case. 

4.2. Irregular sampling with derivatives. 

Theorem 4. Assume that thefirst k derivatives f, f' ... , f(k) are sampled at 
a s-dense set X= (xi)iEz. If c < njw, then the iteration procedure 

//) =p (( XXk 

j! 

(50) = - ( ( (~x1 xi))~ 
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and 
00 

(51) f = qn 
n=O 

is a complete reconstruction of f E B2(Q2). The rate of convergence is 

(52) Ilf -fn ?1 (3 c)(k+l)(nfl+) 7rk+1 ?(53w)k'_ ifl (52) 7itf <(rk+l - (wj)k+l 

Proof. We set for f E B2(Q) 

(53) Akf(x) =p (Z( f( (xi) j! i A(x)) 
\iEZ\ j=0 

Again, we only need to show that Ak is invertible on B2(Q) and apply 
Lemma 3. First one calculates 

2 

(54) If - AfII2 ? E I f(x) - E f(')(xi) (d 
j=0 

Since the first k derivatives of the integrand vanish at each xi, Wirtinger's 
inequality is applicable k times to f =4 y + fx', and one obtains 

2 
Yi ~ k (x-x 

f (x) - E Zf()(xi) (! x dx 

2 
32 yik..i 

< XI f'(x) - E f(j)(xi) j 
- 

dx 
-r ~2 (1 -1) 

2 
(55) 34 Yi k X_X 2 

* 

7r4 
(, f" (x) -f(i)(Xi( -, 2)! 

dx 
j=2 (-) 

*<...- 7? 2 If(k) (X) -f(k) (x,) 12 dx 

/2k+1 Yi 
( )k+ j If(k+l)(x)2 dx. 

Thus, for f E B2(Q), invoking Bernstein's inequality k + 1 times, one obtains 
k?1 50 k?1 

( 5 6) Ilf l-Ak (5 jjfll (k +1t)j < )) 

For 3cw < , Lemma 3 finishes the proof. Ol 

Remarks. 1. A statement for the stability is obtained as in Corollary 1. Setting 
eij = j!-1A-1P((x - xi)jXi) E B2(Q) gives the series expansion 

k 

(57) f (x) = Z f(J) (xi)eij(x), 
i j=O 

similar to Corollary 2. 
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2. The interest of Theorem 4 lies in the favorable speed of convergence. From 
regular sampling with derivatives [23, 24] the optimal sampling rate is known 
to be ( = (k + 1)nj/wo. With other Wirtinger-type inequalities [5], or using a 
good estimate for the remainder term of Taylor's polynomial, the estimate of 
the required density a can be improved to (5) = O(k). 

4.3. Irregular sampling in higher dimensions. Finally we look at the irregular 
sampling problem in higher dimensions. Although the numerical constants get 
worse with increasing dimension, we include a reconstruction algorithm because 
no constructive method for the complete reconstruction from random samples 
seems to be known in higher dimension. Partial results can be found in [25, 22, 
3]; for the qualitative reconstruction theory see [9, 10]. 

The notation is the same after interpreting all quantities as vectors in Rn 
B2(Q) = {f E L2(Rn): supp f c Q} is now a closed subspace of L2(Rn) , where 
Q C Rn is compact. The projection from L2(Rn) onto B2(Q) is (Pf)^ - 

xQf. The special extension of the spectrum Q along the coordinate axes is 
measured by 1)i = supt=(t,, t2, ..., tn ) EQ I ti I - 

A sampling set X = (xi)iEI in Rn is said to be a = ((1, ..., 6n)-dense if 

UieI,B,(xi) = Rn, where B,(x) denotes the cube Hln7=I[Ki - (i/2, Xi + i5/2] 
centered at x = (4i n ..., n) E Rn. (Note that for dimension n = 1 , this 
definition differs slightly from the density used in the previous sections.) For 
every (-dense set X a partition of unity (Vli)iE is chosen with the properties: 
supp fi C B3(xi), 0 < fi(x) < 1, and Ei /i(x) _ 1 . 

Theorem 5. Given Q C Rn with linear extensions co = (91, ...N, co) and 
B2(Q), choose ( = (61, ...,(5n) such that (5 * Cl = EZn 1(5, oj < In2. If 
X = (xi)iEI is a 6-dense sampling set in Rn, then every f E B2(Q) can be 
reconstructed from its sampled values f (xi) by means of the following iteration 
procedure: 

(58) o = P (f(xi)y,i) 

(59) qn+1 = O$n - p (z ~~(Xi) Vli) 

and 
00 

(60) f =Jq n , 

n=O 

where all sums converge in L2(Rn). 
Proof. We only have to show that the operator A: B2(Q) B2(Q) 

(61) Af (x) = p ( f (xi)>/i(x)) 

is invertible on B2(Q). As in ?3, the (-oscillation of a function is defined by 

(62) osc3 f(x)= sup If(x+u)- f(x)I. 
uT 1n 



RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING 193 

2 

l3f - AfII12 < J Z(f(x) - f(xi))y/i(x) dx 

(63)2 2 

< Zosc f(x) qi(x) dx = II osc3 fII2. 

Since f E B2(Q) is an entire function, its Taylor series expansion at x can be 
used to obtain a pointwise estimate for the oscillation: 

osc3 f(x) = sup If(x + u) - f(x) 
jujl<C5 

(64) = sup E !LDaf(X) < E -D IDaf(x)I, 
IuI? jaj>1 jaj>1 

where the multi-index notation a = (ai, ..., an), Ua = Hr=1 u7, Daf(x) - 

Ilalf(xI,... , Xn)/OaalXlaa2X2 ..anXn, a! = al!a2! an!, and jal =a,+ 

an has been used. 
Consequently, one obtains 

(65) I Ioscf ? Z E !IIDaf II. 

By the multivariate version of Bernstein's inequality IlDaflI < )II f II for f E 

B2 (Q) one arrives at 

(66) ln osc3fI ?1 < V(a) Ilfil = (ew - l )IIAfI. 

If 6) < In 2 , then A is invertible on B2(Q) and the rest follows from Lemma 
3. El 

Remarks. 1. Stability and series expansion are formulated exactly as in Corol- 
laries 1 and 2. 

2. If the spectrum is the cube Q = [-w)O, c)0]n and 1 = =n = 5o, then 

the density has to satisfy 
ln 2 

(67) 6? < 
2 

no)0 
which gets worse with increasing dimension n. 
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